Of Cyphers

This part of the site deals with the Baconian authorship theory. Which theory pivots on encrypted Bacon signatures in Shakespeare’s Sonnets. And in order to make sense of the evidence on these pages, a short introduction to Baconian cryptology may be useful :

Letters can be written as their index number from the alphabet. Which makes it crucial to know that in Bacon’s days ‘J’ was still regarded as an extended ‘I’, and that U and V were different versions of the same letter. As they still are in another letter : “W” = ‘double U’.

Baconian research involves three encryption methods :

Simple cypher :

A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    Q    R    S    T    V    W    X    Y    Z
1    2    3     4    5     6    7     8    9    10   11   12   13  14    15   16   17  18  19   20   21   22  23  24

Francis Bacon                   =     67   +   33   =   100
F. Bacon                             =       6   +   33   =     39
Francis B.                          =     67   +      2   =      69

William Shakespeare      =    74   +  103   =   177
Shakespeare – William   =   103   –    74    =     29
Will Shakespeare            =     52   +  103   =   155
W. Shakespeare               =     21   +  103   =   124
William S.                         =     74  +     18   =     92

Christopher Marlowe     =    133   +   81   =   214
Christopher – Marlowe   =    133   –    81   =     52
Kit Marlowe                     =      38   +   81   =    119
Chr. Marlowe                   =      28   +   81   =   109

Reverse Cypher

 A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    Q    R    S    T    V    W    X    Y    Z  
24   23  22  21  20  19   18   17   16  15  14    13   12    11  10    9    8    7     6    5     4      3    2    1

Francis Bacon                   =   108   +   92   =  200
F. Bacon                             =      19   +   92   =   111
Francis B.                          =     108   +  23   =   131

William Shakespeare      =   101   +  172   =   273
Will Shakespeare            =     48   +  172   =   220 
W. Shakespeare               =       4   +  172   =    176 
William S.                         =    101   +     7   =    108

Christopher Marlowe     =    142   +   94   =   236
Kit Marlowe                     =      37   +   94   =    131 
Chr. Marlowe                   =      47   +   94   =    141

Kay (or Key) cypher :

 A    B    C    D    E    F    G    H    I    K    L    M    N    O    P    Q    R    S    T    V    W    X    Y    Z 
 27  28  29  30  31  32   33  34  35  10   11   12   13  14    15   16   17  18  19   20   21   22  23  24

Francis Bacon                   =     171   +  111   =  282
F. Bacon                             =      32   +  111   =   143
Francis B.                          =      171   +  28   =   199

William Shakespeare      =   152   +  259   =   411
Will Shakespeare            =     78   +  259   =   337 
W. Shakespeare               =     21   +  259   =    176 
William S.                         =   152   +    18   =    170

Christopher Marlowe     =    263   +  133  =   399
Kit Marlowe                     =      64   +  133   =   197 
Chr. Marlowe                   =      80   +  133  =   213

Bacon mentions Kay cypher in his Advancement of Learning (1605). But without an user’s guide. This code was eventually broken by a certain W. E. Clifton somewhere in the nineteenth or early twentieth century. And its shows the devious nature of its inventor in the addition of letters 25 and 26 : ‘&’ and ‘et’. A source of frustration to any code breaker who takes an alphabet of 24 letters for granted.

It also plugs safety leaks like “27 – 13 – 30  is the most frequent three letter combination and therefore deciphers as A – N – D.” But in this basic version (Kay 2) it still pleases code breakers with observations like “31 is the most frequent letter, therefore 31 = E.” The professional version of Kay cypher therefore continues with K = 36. And K = 62 ; all the way up through the 2-digits range. A method that encrypts signatures to a point that they can no longer be recognized as such in the total of a given letter sequence. If Kay cypher is mentioned, it therefore concerns Kay 2 cypher.

Checking letter sequences in a parallel research on three different keys is rather elaborate. And for good measure this research habitually restricts itself to checking simple cypher sequences on decypherings in each of these keys. The approach may be fundamentally wrong, but it applies in a most natural way, and performs to satisfaction in my research. To rather convincing results even, because the flawed method does not produce flaws in the logic that marks a hit on an intentional signature.

Hits that may result from mere chance, as the fundamental flaw in this type of research is its incapability to sift out the signatures that were not intended as such. Reason to introduce a control group of Sonnets that can be trusted to produce reliable statistics on the frequency of chance hits in the average Shakespeare Sonnet. The test is identical to the research on these pages, which covers the checked signatures in three encryptions, counted from both sides, on subtotals in fourteen and fifteen line initials, and also counted on Fibonacci lines only :

Federico Garcia Lorca: Soneto de la Guirnalda de las Rosas
Shakespeare : 3
including a simple cypher ‘W. Shakespeare’ over a total of fourteen capitals.
Bacon            : 2
‘Francis Bacon’ in both directions, as simple cypher on ‘Q’.
Marlowe       : 6
‘Kit Marlowe’ in simple cypher in both directions, symmetrically. And a reverse cypher ‘Christopher’ over a total of fifteen line initials.

Arthur Rimbaud : Voyelles
Shakespeare : 2
including a simple cypher ‘Will Shakespeare’ over a total of fourteen line initials.
Bacon             : 1
on a subtotal over fifteen
Marlowe       : 1
on a subtotal over fourteen

Fernando Pessoa : Sonnet XIII
Shakespeare : 4
in subtotals. Including a simple Cypher ‘W. S’ on ‘I’
Bacon             : 1
this ‘F. Bacon’ also deciphers as ‘W. S’ on ‘I’.
Marlowe       : 2
Fibonacci lines from both directions on ‘I’

Francesco Petrarca : Al cader d’una pianta che si svelse
Shakespeare : –
Bacon             : 2
on Fibonacci lines
Marlowe        : 2
on subtotals

Willem Kloos : Ik ben een god in ‘t diepst van mijn gedachten
Shakespeare : 4
including a Kay cypher ‘William S’ over a total of fifteen line initials. And two hits on ‘I’.
Bacon             : 1
subtotal on ‘F. Bacon’ or ‘W. S.’
Marlowe       : 3
on subtotals
The central ‘I’ on line 8 is signed ‘Will’ in the Golden Section. This calculation by definition takes the first line’s second initial into account, and this brings the regular subtotal of this ‘I’ on ‘William’ in reverse cypher. This can’t be explained away as a mere coincidence, because the author’s Christian name is (Dutch for) ‘William’.

Rainer Maria Rilke : Sonnet an Orpheus  
Shakespeare : 2
on subtotals. Also counted as Bacon signatures.  
Bacon             : 4
on subtotals  
Marlowe        : 3
on subtotals.
Three lines at the centre (7, 8 & 9) are signed ‘William S’, ‘Bacon’ and ‘Francis’ on initials that suggest to write ‘us’.

A more basic method of encryption substitutes letters by letters. The Baconian research on Shakespeare’s Sonnets is already drowning in signatures, and has no choice but to ignore the possibility, But that is no excuse to leave the most basic of Kay cyphers unmentioned.

THE  QUICK  BROWN  FOX  JUMPS  OVER  THE  LAZY  DOG

A    B    C    D    E     F    G    H    I    K    L    M    N    O    P    Q    R    S    T    V    W    X    Y    Z 
K    L    M   N    O    P    Q    R    S    T    V    W    X    Y     Z    A    B    C    D    E     F    G    H    I  

ALI  DVSMO  LBYMX  PYR  OKDSC  YXQS  COG  ZKOM  TED

Due to a barrage of spam, the comment option had to be disabled.

Serious reply’s will be copied to this page from the link below

enter a comment